Package 'LowWAFOMNX'

Title: Low WAFOM Niederreiter-Xing Sequence
Description: Implementation of Low Walsh Figure of Merit (WAFOM) sequence based on Niederreiter-Xing sequence <DOI:10.1007/978-3-642-56046-0_30>.
Authors: Shinsuke Mori [aut], Ryuichi Ohori [aut], Makoto Matsumoto [aut], Mutsuo Saito [cre]
Maintainer: Mutsuo Saito <[email protected]>
License: BSD_3_clause + file LICENSE
Version: 1.1.1
Built: 2024-11-19 05:56:49 UTC
Source: https://github.com/mersennetwister-lab/lowwafomnx

Help Index


Low WAFOM Niederreiter-Xing Sequence

Description

Description: R implementation of Low Walsh Figure of Merit Sequence based on Niederreiter-Xing Sequence.

Details

Porting to R by Mutsuo Saito. The R version does not return coordinate value zero, but returns value very near to zero, 2^-64.

Acknowledgment

The development of this code is partially supported by JST CREST.

Reference

* Shinsuke Mori, "Suuchi Sekibun no tameno QMC Ten Shuugou no Sekkei, Tansaku, oyobi sono Yuukousei", Master's Thesis, 2017, * Ryuichi Ohori, "Efficient Quasi Monte Carlo Integration by Adjusting the Derivation-sensitivity Parameter of Walsh Figure of Merit", Master's Thesis, 2015. * S. Harase and R. Ohori, "A search for extensible low-WAFOM point sets", arXiv preprint, arXiv:1309.7828, (2013), https://arxiv.org/abs/1309.7828. * Harase, S. (2016). "A search for extensible low-WAFOM point sets", Monte Carlo Methods and Applications, 22(4), pp. 349-357, 2017. * M. Matsumoto and R. Ohori, "Walsh Figure of Merit for Digital Nets: An Easy Measure for Higher Order Convergent QMC", Springer International Publishing, Cham, 2016, pp. 143-160. * M. Matsumoto, M. Saito, and K. Matoba, "A computable figure of merit for quasi-Monte Carlo point sets", Mathematics of Computation, 83 (2014), pp. 1233-1250. * G. Pirsic, "A software implementation of Niederreiter-Xing sequences", in Monte Carlo and Quasi-Monte Carlo Methods 2000, Springer, 2002, pp. 434-445. https://sites.google.com/site/isabelpirsic/nxlegacy. * C. P. Xing and H. Niederreiter, "A construction of low-discrepancy sequences using global function fields", ACTA ARITHMETICA, 73 (1995), pp. 87-102.

Examples

srange <- lowWAFOMNX.dimMinMax()
mrange <- lowWAFOMNX.dimF2MinMax(srange[1])
points <- lowWAFOMNX.points(dimR=srange[1], dimF2=mrange[1])
points <- lowWAFOMNX.points(dimR=srange[1], dimF2=mrange[1], digitalShift=TRUE)

get minimum and maximum F2 dimension number.

Description

get minimum and maximum F2 dimension number.

Usage

lowWAFOMNX.dimF2MinMax(dimR)

Arguments

dimR

dimention.

Value

supported minimum and maximum F2 dimension number


get minimum and maximum dimension number of Low WAFOM Niederreiter-Xing Sequence

Description

get minimum and maximum dimension number of Low WAFOM Niederreiter-Xing Sequence

Usage

lowWAFOMNX.dimMinMax()

Value

supported minimum and maximum dimension number.


get points from Low WAFOM Niederreiter-XingSobolSequence

Description

This R version does not returns coordinate value zero, but returns value very near to zero, 2^-64.

Usage

lowWAFOMNX.points(dimR, dimF2 = 10, digitalShift = FALSE)

Arguments

dimR

dimension.

dimF2

F2-dimension of each element.

digitalShift

use digital shift or not.

Value

matrix of points where every row contains dimR dimensional point.